Binuclear Metal Complexes. XV.¹⁾ Copper(II) and Nickel(II) Complexes of Binucleating Ligands Derived From 3-Formyl-salicylic Acid and Diamines²⁾

Mitsunori Tanaka, Michiyo Kitaoka, Hisashi Okawa,*** and Sigeo Kida*

Faculty of Education, Kagawa University, Takamatsu, Kagawa 760
*Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812
(Received March 29, 1976)

Copper(II) and nickel(II) complexes of the 3-formylsalicylic acid-diamine Schiff bases, H₄fsaen, H₄fsaen,

In the previous papers of this series,^{3,4}) we have reported that 3-formylsalicylic acid and its Schiff bases with alkyl amines form binuclear copper(II) and nickel(II) complexes. In those complexes the phenolic oxygen operates as a bridging group, and the carboxylate oxygen and the formyl oxygen or imino nitrogen coordinate to metal ion. It is supposed that two organic moieties are constructed *trans* to each other (Fig. 1).

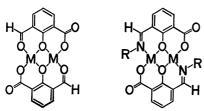


Fig. 1.

The Schiff bases derived from 3-formylsalicylic acid and diamines would form binuclear complexes bridged by the phenolic oxygens. One of the purposes of this study is synthesizing binuclear copper(II) complexes with these Schiff bases and investigating the spin-spin exchange interaction between copper(II) ions.

Geometrical requirement of the ligands results in the formation of a cis-configuration complex with respect to the imino nitrogens and the carboxylate oxygens. Therefore, the "inside" coordination site has N_2O_2 -

Fig. 2.

coordinating atoms, while the "outside" coordination site has O_4 -coordinating atoms. Since there is a considerable difference in the ligand field strength between the "inside" and "outside" coordination spheres, the present ligands might form a binuclear nickel(II) complex composed of one paramagnetic and one diamagnetic metal ions. Synthesis of the binuclear nickel(II) complex of a novel spin-state is another purpose of this study.

The 3-formylsalicylic acid-diamine Schiff bases utilized in this study are as follows: H₄ fsaen (Schiff base with ethylenediamine), H₄fsapn (propylenediamine), H₄fsatn (trimethylenediamine), H₄fsaph (o-phenylenediamine), and H₄fsach (1,2-cyclohexanediamine). The binuclear copper(II) and nickel(II) complexes with these ligands were synthesized and characterized on the basis of elemental analyses, infrared spectra, visible spectra, and magnetic measurements. The binuclear complexes are abbreviated as Cu₂(fsaen), Ni₂(fsapn), and so on. The mononuclear complexes, M(H₂fsaen)·1/2H₂O and M-(H₂fsapn)·1/2H₂O (M=Cu(II) and Ni(II)), were also isolated and characterized.

Experimental

Syntheses. 3-Formylsalicylic acid was prepared after the method of Duff and Bills.⁵⁾ The synthetic procedures of the complexes are the same in principle. Syntheses of Cu(H₂-fsaen)·1/2H₂O, Cu₂(fsaen)·2H₂O, and Ni₂(fsaen)·3H₂O are represented.

 $Cu_2(H_2 f s a e n) \cdot 1/2H_2O$. 3-Formylsalicylic acid (136 mg) was dissolved in an aqueous solution (30 ml) of sodium carbonate (55 mg), and then ethylenediamine (30 mg) was added. To this hot solution was added an aqueous solution (10 ml) of copper(II) acetate monohydrate (100 mg). Soon purple needles separated. After the reaction mixture was warmed at 60°C for a while, the product was isolated, washed with hot water and dried under reduced pressure.

 $Cu_2(fsaen) \cdot 2H_2O$. An aqueous solution (30 ml) containing 3-formylsalicylic acid (136 mg), ethylenediamine (30 mg) and sodium carbonate (55 mg) was warmed at ca. 60°C

^{**} To whom correspondence may be addressed.

TABLE 1. ELEMENTAL ANALYSES OF COMPLEXES

Complex ^a)	Found (%)				Calcd (%)			
	C	H	N	M	$\widehat{\mathbf{c}}$	Н	N	M
$Cu(H_2 fsaen) \cdot 1/2H_2O$	50.85	3.38	6.65	14.92	50.65	3.54	6.56	14.89
$Cu(H_2fsapn) \cdot 1/2H_2O$	52.00	3.67	6.37	14.71	51.76	3.89	6.35	14.41
$Ni(H_2fsaen) \cdot 1/2H_2O$	51.45	3.52	6.89	13.57	51.22	3.58	6.64	13.91
$Ni(H_2fsapn) \cdot 1/2H_2O$	52.18	4.36	6.22	13.11	52.33	3.98	6.42	13.46
$Cu_2(fsaen) \cdot 2H_2O$	41.28	3.07	5.15	24.60	41.95	3.13	5.44	24.66
$Cu_2(fsapn) \cdot 2H_2O$	42.80	3.43	5.28	24.33	43.10	3.43	5.29	24.00
$Cu_2(fsatn) \cdot 2H_2O$	42.86	3.45	5.29	23.92	43.10	3.43	5.29	24.00
$Cu_2(fsaph) \cdot H_2O$	48.90	2.45	5.32	24.68	48.45	2.59	5.13	23.30
$Cu_2(fsach) \cdot 2H_2O$	46.54	3.72	4.56	21.94	46.40	3.89	4.92	22.32
Ni ₂ (fsaen) · 3H ₂ O	40.98	3.34	5.26	22.15	41.28	3.46	5.35	22.42
$Ni_2(fsapn) \cdot 3H_2O$	42.48	3.81	5.12	22.08	42.44	3.75	5.21	21.83
$Ni_2(fsatn) \cdot 5H_2O$	39.37	4.01	4.83	20.26	39.77	4.22	4.88	20.32
$Ni_2(fsaph) \cdot 5H_2O$	43.17	3.79	4.45	19.01	43.48	3.65	4.61	19.32
Ni ₂ (fsach) · 3H ₂ O	45.35	4.33	4.66	20.68	45.72	4.19	4.85	20.32

a) $fsaen^4 = C_{18}H_{12}N_2O_6$, $fsapn^4 = fsatn^4 = C_{19}H_{14}N_2O_6$, $fsaph^4 = C_{22}H_{10}N_2O_6$, and $fsach^4 = C_{22}H_{18}N_2O_6$.

and to this mixture was added an aqueous solution (15 ml) of copper(II) acetate monohydrate (200 mg). This was heated at 60°C for 30 min and yellowish brown prisms which separated were collected, washed with hot water and dried under reduced pressure.

 $Ni_2(fsaen) \cdot 3H_2O$. To a warm aqueous solution (30 ml) of 3-formylsalicylic acid (136 mg), ethylenediamine (30 mg) and sodium carbonate (55 mg), an aqueous solution (15 ml) of nickel(II) acetate tetrahydrate (250 mg) was added. The mixture was maintained at this temperature for 1 h. Red prisms which separated were collected, thoroughly washed with hot water, and dried under reduced pressure.

Elemental analyses of the mononuclear and binuclear metal complexes are given in Table 1.

Measurements. Infrared spectra were measured with a Hitachi 215 grating infrared spectrometer on a KBr disk. Reflectance spectra were recorded with a Shimadzu multipurpose spectrophotometer Model MPS-5000. Magnetic susceptibilities were measured by the Faraday method from liquid nitrogen temperature to room temperature. Diamagnetic correction was done using the Pascal constants. Effective magnetic moment was calculated by the equation, $\mu_{\rm eff} = 2.828 \sqrt{(\chi_{\rm A} - N\alpha) T}$. The temperature-independent paramagnetism, $N\alpha$, for a paramagnetic nickel(II) ion is estimated at 193×10^{-6} e.m.u./mol. 7

Results and Discussion

Mononuclear Complexes. Color and physical properties for the mononuclear complexes are tabulated in Table 2. The infrared absorption bands at 1725—1705 and at 1645—1635 cm⁻¹ are tentatively assigned to the

TABLE 2. COLOR, SPECTRAL DATA, AND MAGNETIC MOMENTS OF MONONUCLEAR COMPLEXES

Complex	Color		ared 1 ⁻¹)	Visible (cm ⁻¹)	$\mu_{ ext{eff}} \ (ext{T}(ext{K})) \ (ext{B.M.})$	
		C=O	C=N	(0)		
Cu(H ₂ fsaen) • 1/2H ₂ O	purple	1705	1645	18100	1.85 (294.3)	
$ ext{Cu}(ext{H}_2 ext{fsapn})$ • $1/2 ext{H}_2 ext{O}$	purple	1705	1645	18200	1.84 (292.9)	
$ ext{Ni}(ext{H}_2 ext{fsaen})$ • $1/2 ext{H}_2 ext{O}$	yellow	1725	1635	18500	diamag.	
$Ni(H_2fsapn) \cdot 1/2H_2O$	orange	1720	1635	18600	diamag.	

C=O stretching vibration of free carboxyl group and the coordinated azomethin group respectively. The ligand field band for Cu(H₂fsaen)·1/2H₂O and for Cu(H₂fsapn)·1/2H₂O well corresponds to the band for N, N'disalicylideneethylenediaminatocopper(II)8-10) and for N, N' - disalicylidene propylenediam in a tocopper (II) 10,11) respectively. The room temperature magnetic moment for Cu(H₂fsaen)·1/2H₂O and for Cu(H₂fsapn)·1/2H₂O also is substantially equal to 1.84 B.M.¹²⁾ for N, N'disalicylideneethylenediaminatocopper(II) and 1.81 B.M.¹²⁾ for N,N'-disalicylidenepropylenediaminatocopper(II) respectively. These facts imply that each of the present complexes has a similar structure to the corresponding N, N'-disalicylidenealkylenediaminatocopper-(II) complex.

It is clear that Ni(H₂fsaen)·1/2H₂O and Ni(H₂fsapn)·

TABLE 3. COLOR, SPECTRAL DATA AND MAGNETIC MOMENTS OF BINUCLEAR COPPER(II) COMPLEXES

Complex	Color		ared 1 ⁻¹)	Visible (cm ⁻¹)		$\mu_{ ext{eff}}(T(ext{K})) \ (ext{B.M.})$	
		C=O	C=N			(2.1.1.)	
Cu ₂ (fsaen) · 2H ₂ O	yellowish brown	1565	1640	13400	18200	0.76(295.4)	
$Cu_2(fsapn) \cdot 2H_2O$	yellowish brown	1560	1630	13000	18000	0.85(299.0)	
$Cu_2(fsatn) \cdot 2H_2O$	blue	1580	1630	14600	17500	0.68(295.4)	
$Cu_2(fsaph) \cdot H_2O$	brown	1550	1620	15000	18000	0.89(296.7)	
$Cu_2(fsach) \cdot 2H_2O$	yellowish brown	1560	1635	15100	17400	1.03(298.4)	

 $1/2\rm{H}_2\rm{O}$ have a planar configuration, since they are diamagnetic and their reflectance spectra possess only one ligand field band around $18500~\rm{cm}^{-1}$, which corresponds to the band for N,N'-disalicylideneethylenediaminatonickel(II)¹⁰⁾ and N,N'-disalicylidenepropylenediaminatonickel(II).¹⁰⁾

Binuclear Copper (II) Complexes. In Table 3 color, infrared and visible absorption bands, and effective magnetic moments for the binuclear copper (II) complexes are given. No absorption band was found in the region $1750-1650 \text{ cm}^{-1}$. Instead a broad and strong band was found around $1550-1580 \text{ cm}^{-1}$. In general the $\nu_{\text{C=0}}$ mode of carboxyl shifts to lower frequency by coordination. In the case of binuclear complexes of 3-formylsalicylic acid and its Schiff bases, the C=O stretching vibration was found around 1550 cm^{-1} . Therefore it seems reasonable to assign the band at $1580-1550 \text{ cm}^{-1}$ to the coordinated carboxylate group.

The reflectance spectra of the complexes show two bands in the visible region. The second (higher energy) band for Cu₂(fsaen) · 2H₂O and for Cu₂(fsapn) · 2H₂O is well in accordance with the band for Cu(H₂fsaen)·1/2-H₂O and for Cu(H₂fsapn)·1/2H₂O, respectively. The position of the second band for Cu₂(fsaph)·H₂O is practically equal to that of the band (17900 cm^{-1}) for N, N'-disalicylidene-o-phenylenediaminatocopper(II). $^{10,12)}$ Therefore, the second band was tentatively assigned to the "inside" copper(II) (CuN₂O₂-chromophor). The band at 17500 cm⁻¹ for Cu₂(fsatn)·2H₂O is considerably higher in energy compared with 16600 cm^{-1 10)} for N, N'disalicylidenetrimethylenediaminatocopper(II). et al. 12,14) have found that dichloro [N, N'-disalicylidenetri methylenediaminatocopper(II)]copper(II) dichloro [N, N'-disalicylidenetrimethylenediaminatocopper(II)]zinc(II) have a d-d band at 17100 cm⁻¹.

This fact implies that the coplanarity of the Cu N O

plane in N,N'-disalicylidenetrimethylenediaminatocopper(II) is enhanced on forming a binuclear complex bridged by the phenolic oxygen. Therefore the band at 17500 cm⁻¹ of Cu₂(fsatn)·2H₂O is attributed to the [CuN₂O₂]-chromophor. On the other hand, the first (lower energy) band is tentatively assigned to the "outside" copper(II) ion. It is not clear if a water molecule coordinates to the "outside" copper from an apical direction.

Sub-normal magnetic moments of the complexes at room temperature suggest a partial spin-pairing between copper(II) ions. The magnetic susceptibility was measured at various temperatures (77.4—300 K). The results are shown in Fig. 3. The magnetisms were well interpreted in terms of the Bleaney-Bowers equation, 15)

$$\chi_{\rm A} = \frac{Ng^2\beta^2}{3kT} \left[1 + \frac{1}{3} \exp{(-2J/kT)} \right]^{-1} + N\alpha,$$

where J is the exchange integral, k the Boltzmann constant, N the Avogadro number, β the Bohr magneton, and g the Lande g-factor. The magnetic parameters, -2J, g, and $N\alpha$, obtained from the best fit of the experimental values to the theoretical values are given in Table 4.

It is well known^{12,14,16,17)} that the copper(II) com-

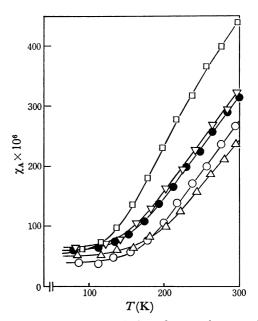


Fig. 3. Temperature variation of magnetic susceptibility of (\bigcirc) Cu₂(fsaen)·2H₂O, (\bigcirc) Cu₂(fsapn)·2H₂O, (\triangle) Cu₂(fsatn)·2H₂O, (∇) Cu₂(fsaph)·H₂O, and (\square) Cu₂-(fsach)·2H₂O.

Table 4. Magnetic parameters, -2J, g, and $N\alpha$, for binuclear copper(II) complexes

Complex	$-2J \ ({ m cm}^{-1})$	g	$N\alpha \times 10^6$ (c.g.s./mol)	
Cu ₂ (fsaen)·2H ₂ O	660	2.20	40	
$Cu_2(fsapn) \cdot 2H_2O$	655	2.20	60	
$Cu_2(fsatn) \cdot 2H_2O$	720	2.20	50	
$Cu_2(fsaph) \cdot H_2O$	650	2.20	65	
$Cu_2(fsach) \cdot 2H_2O$	555	2.20	55	

plexes with the tetradentate Schiff bases of salicylaldehyde form binuclear copper(II) complexes bridged by the phenolic oxygens when treated with copper(II) chloride or copper(II) bromide. The magnetic properties of these complexes have been elucidated by Sinn et al., 16) and the -2J values, the energy separation between the singlet and triplet states, are evaluated at 98—472 cm⁻¹. It is apparent that the present complexes exhibit a stronger antiferromagnetic spin-exchange interaction compared with dihalogeno [N, N']-disalicylidenealkylenediaminatocopper(II)]copper(II) plexes. In these complexes it seems that the steric hindrance between the halogen and the hydrogen attached to the 3-position (next to the phenolic oxygen) of the aromatic ring is sufficiently large to deform the (X=halogen) plane to a pseudotetrahedral

geometry. ^{16,18}) In fact it was demonstrated from X-ray analysis ¹⁹) that the "outside" configuration of dichloro-[N, N'-disalicylideneethylenediaminatocopper(II)] copper(II) is pseudotetrahedral. On the other hand, no steric hindrance is expected in our complexes, since the carboxyl group attached to the 3-position of the salicylaldehyde moiety takes part in coordination. Thus

Table 5. Color, spectral data, and magnetic moments of binuclear nickel(II) complexes

Complex	Color	Infrared (cm ⁻¹)		Visible			$\mu_{\rm eff}(T({ m K}))^{ m a}$
		C=O	C=N		(cm ⁻¹)		(B.M.)
$Ni_2(fsaen) \cdot 3H_2O$	red	1555	1623	9400	16000	18300	2.17(295.3) [3.14]
$Ni_2(fsapn) \cdot 3H_2O$	orange	1555	1625	9600	15000	18700	2.27(299.0) [3.23]
$Ni_2(fsatn) \cdot 5H_2O$	blue	1560	1635	8200 14500	9700 17100	12400	3.36(298.3)
$Ni_2(fsaph) \cdot 5H_2O$	reddish orange	1550	1620	9500	15500	18500	2.33(296.6) [3.28]
$Ni_2(fsach) \cdot 3H_2O$	orange	1555	1625	9100	14800	18500	2.25(294.8) [3.21]

a) Magnetic moment per nickel(II) ion. The value in a bracket is calculated on the assumption that one of nickel(II) ions is diamagnetic.

the configuration of the "outside" copper (Cu

is substantially planar and two tetragonal planes of the "inside" and "outside" copper(II) ions form a coplane. Thereby the spin exchange between the metal ions may be efficiently caused by a super-exchange mechanism through the oxygen P_{π} -orbitals.²⁰⁾

Binuclear Nickel(II) Complexes. The infrared spectra of the binuclear nickel(II) complexes are similar to those of the corresponding copper(II) complexes. Each reflectance spectrum of Ni₂(fsaen)·3H₂O, Ni₂-(fsapn)·3H₂O, Ni₂(fsaph)·5H₂O, and Ni₂(fsach)·3H₂O has three d-d bands in visible region. The band around 18500 cm⁻¹ seems to correspond to the band for the mononuclear nickel(II) complexes. The bands around 9500 and 15500 cm⁻¹ imply that these complexes contain a nickel(II) of octahedral configuration. Accordingly, the coordination of water from apical positions was supposed for the "outside" nickel. The bands around 9500 and 15500 cm⁻¹ were assigned to the $^3T_{2g} {\leftarrow} ^3A_{2g}$ and $^3T_{1g} {\leftarrow} ^3A_{2g}$ transitions respectively. Since the 10 Dq for hexaaquonickel(II) is estimated at 8500 cm⁻¹,²¹⁾ the ligand field in the present complexes is stronger than H₂O.

The magnetic moments calculated per one nickel(II) ion are much lower than the spin-only value 2.83 B.M. This may be explained by (a) antiferromagnetic spinpairing between paramagnetic nickel(II) ions or (b) formation of binuclear complex containing one paramagnetic and one diamagnetic nickel(II) ions. The visible spectra of the complexes seem to support the latter possibility. In order to obtain further evidence magnetic susceptibility was measured at various temperatures. In Fig. 4, $1/(\chi_A - N\alpha)$ is plotted against temperature. As is seen in Fig. 4 the magnetisms of the complexes are well interpreted in terms of the Curie-Weiss law $(\chi_A = C/(T - \theta))$. It should be noted that the Weiss constants are very small (at best 4 K). The phenolic oxygen-briged binuclear nickel(II) complexes so far reported obey the Curie-Weiss law in the range from liquid nitrogen temperature to room temperature with a relatively large Weiss constant more than 30 K.3,4,22,23) Accordingly it is concluded that Ni₂-(fsaen) · 3H₂O, Ni₂(fsapn) · 3H₂O, Ni₂(fsaph) · 5H₂O, and

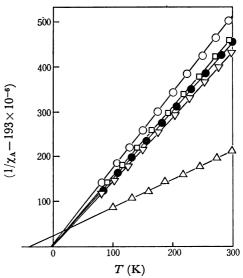


Fig 4. Plots of inverse susceptibilities as a function of temperature for (○)Ni₂(fsaen)·3H₂O, (♠)Ni₂(fsapn)·3H₂O, (△)Ni(fsatn)·5H₂O, (▽)Ni₂(fsaph)·5H₂O, and (□)Ni₂(fsach)·3H₂O per a nickel atom.

Ni₂(fsach)·3H₂O are novel complexes composed of one paramagnetic and one diamagnetic nickel(II) ions. Thus, magnetic moments per binuclear units were calculated to give 3.14—3.28 B.M., which are quite common to a nickel(II) in an octahedral environment.

Paramagnetic-diamagnetic binuclear nickel(II) complexes are rare.²²⁾ The success in synthesizing paramagnetic-diamagnetic binuclear nickel(II) complexes with the present ligands is obviously cocerned with a considerable difference in the ligand field strength between the "inside" and "outside" coordination sites. The coordinatively selective property of the ligands also leads to the formation of the copper(II)-paramagnetic nickel(II) complex (CuNi(fsaen))²⁴⁾ and other hetero-metal binuclear complexes.²⁵⁾ The Schiff bases derived from 1,3,5-triketones and diamines,^{26–29)} which are similar in coordinating mode to our ligands, should form paramagnetic-diamagnetic binuclear nickel(II) complexes.

The color and the visible spectrum of Ni₂(fsatn).

5H₂O are markedly different from other nickel(II) complexes. It is known that N, N'-disalicylidenetrimethylenediaminatonickel(II) maintains a planar structure. 10,30) However its d-d band is fairly low in energy, demonstrating a weaker ligand field of the ligand with a 6-6-6 condensed ring system compared with the tetradentate salicylaldehyde-Schiff bases with a 6-5-6 condensed ring system. The binuclear nickel(II) complex of the macrocycle obtained from 2-hydroxy-5methylisophthalaldehyde and 1,3-propanediamine (nickel(II) ions are bridged by the phenolic oxygens) is known to have a high-spin state, where the nickel is coordinated with chloride ion in the apical position.²³⁾ From this fact it is likely that the "inside" ligand field strength of H₄fsatn decreases to allow the fifth (and the sixth) coordination from an apical position when the phenolic oxygen operates as a bridge. The room temperature magnetic moment of Ni₂(fsatn)·5H₂O is 3.36 B.M. per one nickel(II) ion. The magnetic moment decreases with lowering of temperature to 2.97 B.M. at 87.5 K. The $1/(\chi_A - N\alpha)$ plots against temperature obey the Curie-Weiss law with the large Weiss constant -40 K. This value is quite comparable to those (-35-41 K) found for the binuclear nickel(II) complexes of 3-formylsalicylic acid-monoamine Schiff bases.4) Thus it is evident that Ni₂(fsatn)·5H₂O is a binuclear complex composed of two paramagnetic nickel(II) ions.

The authors are grateful to the Ministry of Education for a Scientific Research Grant-in-Aid.

References

- 1) Part XIV: M. Tanaka, H. Okawa, R. Miyashita, and S. Kida, Chem. Lett., 1974, 1401.
- 2) Presented at the Meeting of Chugoku-Shikoku and Kyushu Branches of Chem. Soc. of Japan, Tottori, November, 1975.
- 3) M. Tanaka, H. Okawa, I. Hanaoka, and S. Kida, *Chem. Lett.*, **1974**, 71.
- 4) M. Tanaka, H. Okawa, T. Tamura, and S. Kida, Bull. Chem. Soc. Jpn., 47, 1669 (1974).
 - 5) J. C. Duff and E. J. Bills, J. Chem. Soc., 1932, 1987.
 - 6) Earnshaw, "Introduction to Magnetochemistry," Aca-

- demic Press, London (1968), pp. 5, 6.
- 7) C. J. Ballhausen, "Introduction to Ligand Field Theory," McGraw-Hill, Inc. (1962), p. 142.
 - 8) S. M. Grawford, Spectrochim. Acta, 19, 255 (1963).
 - 9) R. Belford and T. Piper, Mol. Phys., 5, 251 (1962).
- 10) R. H. Holm, J. Am. Chem. Soc., 82, 5632 (1960).
- 11) R. S. Dawning and F. L. Urbach, *J. Am. Chem. Soc.*, **91**, 5977 (1969).
- 12) S. J. Gruber, C. M. Harris, and E. Sinn, *J. Inorg. Nucl. Chem.*, **30**, 1805 (1968).
- 13) K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," 2nd ed., John-Wiley & Sons, Inc. (1970), p. 232.
- 14) S. J. Gruber, C. M. Harris, and E. Sinn, *Inorg. Nucl. Chem. Lett.*, **4**, 107 (1968).
- 15) B. Bleaney and K. D. Bowers, *Proc. R. Soc. London*, Ser. A, 214, 451 (1952).
- 16) S. J. Gruber, C. M. Harris, and E. Sinn, *Inorg. Chem.*, **7**, 268 (1968); *J. Inorg. Nucl. Chem.*, **30**, 1805 (1968).
- 17) M. Kato, Y. Muto, H. B. Janassen, K. Imai, and T. Tokii, *Bull. Chem. Soc. Jpn.*, **43**, 1066 (1970).
- 18) C. M. Harris, H. R. H. Patil, and E. Sinn, *Inorg. Chem.*, **6**, 1102 (1967).
- 19) C. A. Bear, J. M. Waters, and T. N. Waters, *Chem. Commun.*, **1971**, 703.
- 20) S. Kida, Y. Nishida, and M. Sakamoto, *Bull. Chem. Soc. Jpn.*, **46**, 2428 (1973).
- 21) C. K. Jørgensen, Acta Chem. Scand., 9, 1362 (1955); 10, 887 (1956).
- 22) H. Okawa, T. Tokii, Y. Muto, and S. Kida, *Bull. Chem. Soc. Jpn.*, **46**, 2464 (1973).
- 23) N. F. Pilkington and R. Robson, Aust. J. Chem., 23, 2225 (1970).
- 24) H. Okawa, M. Tanaka, and S. Kida, Chem. Lett., 1974, 987.
- 25) H. Okawa, Y. Nishida, M. Tanaka, and S. Kida, Presented at the 24th Symposium of Coordination Chemistry, Kanazawa, October, 1974.
- 26) F. Sagara, K. Kobayashi, and K. Ueno, Bull. Chem. Soc. Jpn., 45, 900 (1972).
- 27) R. L. Lintvedt, L. L. Borer, D. P. Murtha, J. M. Kuszaj, and M. D. Glick, J. Am. Chem. Soc., **97**, 2925 (1975).
- 28) B. Tomlonovic, R. L. Hough, M. D. Glick, and R. L. Lintvedt, J. Am. Chem. Soc., 97, 2925 (1975).
- 29) D. E. Fenton and S. E. Gayda, *Inorg. Chim. Acta*, 14, L11 (1975).
- 30) W. C. Hoyt and G. W. Everett, Jr., *Inorg. Chem.*, **8**, 2013 (1969).